References

¹ Landahl, M. T., Unsteady Transonic Flow, International Series of Monographs in Aeronautics and Astronautics, Pergamon Press, London, 1961.

²Landahl, M. T., "Linearized Theory for Unsteady Transonic Flow," Symposium Transsonicum, edited by K. Oswatitsch, Springer-Verlag, Berlin, 1964, pp. 414-439.

³Ehlers, F. E., "A Finite Difference Method for the Solution of the Transonic Flow Around Harmonically Oscillating Wings," NASA CR-2257, Jan. 1974.

⁴Traci, R. M., Albano, E. D., Farr, J. L., and Cheng, H. K., "Small Disturbance Transonic Flows About Oscillating Airfoils," AFFDL-TR-74-37, June 1974.

⁵Chin, W. C., "Nonlinear Formulation for Low-Frequency

Transonic Flow," AIAA Journal, Vol. 16, June 1978, pp. 616-618.

6 Chin, W. C., "The Transonic Oscillating Flap," Office of Naval

Research, ONR Rept. D-180-25330-1, May 1979.

⁷Tijdeman, H., "Investigations of the Transonic Flow Around Oscillating Airfoils," National Aerospace Laboratory, The Netherlands, NLR-TR-77090-U, 1977.

⁸Rizzetta, D. P. and Chin, W. C., "Effect of Frequency in Unsteady Transonic Flow," AIAA Journal, Vol. 17, July 1979, pp. 779-

781.

9 Tijdeman, H. and Seebass, R., "Transonic Flow Past Oscillating State Machanics edited by M. Van Airfoils," Annual Review of Fluid Mechanics, edited by M. Van Dyke, J. V. Wehausen and J. Lumley, Vol. 12, 1980, pp. 181-222.

10 Chin, W. C., "Inviscid Parallel Flow Stability with Mean Profile

Distortion," Journal of Hydronautics, Vol. 14, July 1980, pp. 91-93.

AIAA 81-4036

Behavior of the Turbulent Energy Equation at a Fixed Boundary

R. W. Derksen* and R. S. Azad† The University of Manitoba, Winnipeg, Canada

I. Introduction

HE behavior of the turbulent energy equation at a fixed boundary has an important significance to the modeling of turbulence phenomena. Coantic1 expressed the turbulent pressure and velocity components as a Taylor series with respect to distance from a wall. He concluded that the dissipation at the wall was approximately 0.095, when normalized by friction velocity (U_{τ}) and kinematic viscosity (ν) . Townsend² corrected Laufer's³ results to make dissipation balance gradient diffusion, with the other terms of the energy equation zero. He cited a dimensional argument to justify his correction. Hanjalić and Launder 4 used a similar power series to estimate dissipation near the wall.

The work reported in this Note is an extension of the previous work of Coantic¹ and Townsend, ² and it is based on an internal axisymmetric incompressible turbulent flow. The object of this Note is to collect the scattered work of this type into a single source.

II. Analysis

A standard cylindrical coordinate system is used with variation of mean quantities being restricted to the radial direction. Upper case letters represent mean quantities, with

Received May 13, 1980, revision received Aug 11, 1980. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1980. All rights reserved

*Graduate Student, Dept. of Mechanical Engineering. Member

†Professor, Dept. of Mechanical Engineering. Member AIAA.

lower case representing turbulent quantities; the symbols u, v, w represent the axial (x), radial (r), and transverse (ϕ) velocity components, respectively.

A power series expansion, with respect to distance from the wall (y=R-r), is used to describe the turbulence field. Subject to the continuity equation and the no-slip boundary conditions, the following expansions are used:

$$u = a_1(x, \phi, t)y + \dots \tag{1}$$

$$v = b_2(x, \phi, t)y^2 + \dots$$
 (2)

$$w = c_1(x, \phi, t)y + ...$$
 (3)

$$p = d_0(x, \phi, t) + d_1(x, \phi, t) Y + \dots$$
 (4)

Eckelmann⁵ reported fluctuations in the molecular shear stress, for directions parallel to the wall, at the wall. Hence u and w must contain a linear term.

The turbulent energy equation, in cylindrical coordinates, is

$$\frac{\nu}{U\tau^{4}} \left[\overline{u^{2}} \frac{\partial U}{\partial x} + \overline{uv} \left(\frac{\partial U}{\partial x} + \frac{\partial U}{\partial r} \right) + \overline{v^{2}} \frac{\partial V}{\partial r} + V \frac{\overline{w^{2}}}{r} \right]$$

$$+ \frac{\nu}{U\tau^{4}} \left[\frac{\partial}{\partial x} \left(U \overline{q^{2}} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r V \overline{q^{2}} \right) \right]$$

$$+ \frac{\nu}{U\tau^{4}} \left[\frac{\partial}{\partial x} \overline{u} (\overline{q^{2}} + \overline{p}) + \frac{1}{r} \frac{\partial}{\partial r} r \overline{v} (\overline{q^{2}} + \overline{p}) \right]$$

$$- \frac{\nu^{2}}{U\tau^{4}} \left[\frac{\partial^{2}}{\partial x^{2}} (\overline{q^{2}}) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \overline{q^{2}} \right) \right]$$
Dissipation
$$+ \frac{\nu^{2}}{U_{\tau}^{4}} \left[\left(\frac{\overline{\partial u}}{\partial x} \right)^{2} + \left(\frac{\overline{I}}{r} \frac{\overline{\partial u}}{\partial \phi} \right)^{2} + \left(\frac{\overline{\partial u}}{\partial r} \right)^{2}$$

$$+ \left(\frac{\overline{\partial v}}{\partial x} \right)^{2} + \left(\frac{\overline{\partial v}}{\partial r} \right)^{2} + \left(\frac{\overline{I}}{r} \frac{\overline{\partial v}}{\partial \phi} \right)^{2}$$

$$+ \left(\frac{\overline{\partial w}}{\partial x} \right)^{2} + \left(\frac{\overline{\partial w}}{\partial r} \right)^{2} + \left(\frac{\overline{I}}{r} \frac{\overline{\partial w}}{\partial \phi} \right)^{2}$$

$$- \frac{4}{r} \left(\frac{\overline{w}}{r} \frac{\overline{\partial v}}{\partial \phi} + \frac{\overline{v^{2}} + \overline{w^{2}}}{r} \right) \right] = 0 \tag{5}$$

where $q^2 = (u^2 + y^2 + w^2)/2$ and the over bar indicates a long time average.

When the power series is substituted into the energy equation and evaluated at the wall (y=0) the following results.

Production

$$\Big|_{y=0} = 0 \tag{6}$$

Advection

$$\Big|_{v=0} = 0 \tag{7}$$

Diffusion

$$\Big|_{v=0} = 0 \tag{8}$$

Gradient Diffusion

$$\Big|_{y=0} = \frac{v^2}{U\tau^4} \left(\overline{a_1^2(x,\phi,t)} + \overline{c_1^2(x,\phi,t)} \right)$$
 (9)

$$\Big|_{y=0} = \frac{v^2}{U\tau^4} \left(\overline{a_1^2(x,\phi,t)} + \overline{c_1^2(x,\phi,t)} \right) \tag{10}$$

Table 1 Limiting values of the constants

Author	Kind of investigation	Reynolds number	$DISM^{a}_{\nu^{2}/U_{\tau}^{4}\overline{a}_{1}^{2}}$	$R^{b}_{\nu^{2}/U_{\tau}^{4}\overline{c_{1}^{2}}}$	$GDIF^{c}_{\nu^{2}/U_{\tau}^{4}(\overline{a_{I}^{2}}+\overline{c_{I}^{2}})}$	$\sqrt{\overline{a_1^2}/\overline{c_1^2}}$
Fortuna and Hanratty ⁶	Pipe flow, aqueous solution electro-chemical method	1,400-1,700	0.09		0.0981 ^d	3.3 ^d
Sirkar and Hanratty ⁷	As above	1,400-1,700		0.0081		
Py ⁸	Channel flow, aqueous solution, electro-chemical method	5,000-23,000	0.09	0.0132	0.1032 ^d	2.6 ^d
Laufer ³	Pipe flow, air hot-wire	50,000-500,000	0.0961	0.00052	0.88	13.6 ^d
Sreenivasan and Antonia ⁹	Channel flow, air hot-film	15,000-25,400	0.0625			
Klages 10	Pipe flow, oil hot film	17,600-17,900	0.0420			
Eckelmann ⁵	Channel flow, oil hot-film	5,600-8,200	0.0576			
Kreplin 11	As above	4,800-7,100	0.0625		•	
Kreplin and Eckelmann 12	As above	7,700	0.0625	0.0042	0.0667 ^d	3.9 ^d
Schildknecht et al ¹³	Pipe flow, air hot wire	27,000-79,000	0.066	0.022 ^d	0.088	1.7 ^d
Mean			0.0699	0.010	0.089	

^a Measureable dissipation. ^b Remainder term. ^c Gradient diffusion. ^d Calculated.

III. Determination of the Constants

The values of the constants $\overline{a_1^2}$ and $\overline{c_1^2}$, given in Table 1, have been obtained from various sources. Laufer 3 gives values of both gradient diffusion [Eq. (9)] and measureable dissipation ($\overline{a_1^2}$), but his dissipation measurement is incorrect. Using the slopes of the u' and w' (rms) distribution it is possible to estimate the constants. This approach has been used by Fortuna and Hanratty, 6 Sirkar and Hanratty, 7 Py, 8 Sreenivasan and Antonia, 9 Klages, 10, Kreplin, 11 and Kreplin and Eckelmann. 12 Schildknecht et al. 13 carried out an extensive measurement of the turbulent energy balance and obtained values of measureable dissipation and gradient diffusion near a wall.

Generally, the distribution of w' shows a sharp curvature at a wall making it very difficult to estimate $\overline{c_1}$. Although this is not true for the u' distribution, any measurement near a wall is difficult to interpret.

IV. Conclusions

From the preceding discussion it is possible to conclude that gradient diffusion balances dissipation at the wall. All other terms in the turbulent energy equation are zero at the wall.

Experimentally we recognize that gradient diffusion approaches ~ 0.09 , and measureable dissipation equals ~ 0.07 at the wall. These values apparently can be measured quite accurately. The value of the remainder term should equal ~ 0.02 at the wall. Evidently, these values are subject to change with improvement of experimental technique; but, it is unlikely that they will change dramatically.

References

¹Coantic, M., "Remarques Sur La Structure De La Turbulence a Proximité d'une Paroi," Comptes Rendus Academie des Sciences, Paris, t. 260, March 1965, pp. 2981-2984.

²Townsend, A. A., *The Structure of Turbulent Shear Flow*, ist ed., Cambridge University Press, 1956, pp. 215-221.

³Laufer, J., "The Structure of Turbulence in Fully Developed Pipe Flow," NACA Tech. Rept. 1174, 1954.

⁴Hanjalic, K. and Launder, B. E., "Contributions Towards a Reynolds-Stress Closure for Low-Reynolds-Number Turbulence," *Journal of Fluid Mechanics*, Vol. 74, April 1976, pp. 593-610.

⁵Eckelmann H., "The Structure of the Viscous Sublayer and the Adjacent Wall Region in a Turbulent Channel Flow," *Journal of Fluid Mechanics*, Vol. 65, Sept. 1974, pp. 439-459.

⁶Fortuna, G. and Hanratty, T. J., "Frequency Response of the Boundary Layer on Wall Transfer Probes," *International Journal of Heat and Mass Transfer*, Vol. 14, Sept. 1971, pp. 1499-1507.

⁷Sirkar, K. K. and Hanratty, T. J., "Limiting Behaviour of the Turbulent Transverse Velocity Component," *Journal of Fluid Mechanics*, Vol. 44, Nov. 1970, pp. 605-614.

⁸ Py, B., "Etude Tridimensionnelle De La Sous-Couche Visqueuse Dans Une Veine Rectangulaire Par Des Mesures De Transfert De Matiere En Pardi," *International Journal of Heat and Mass Transfer*, Vol. 16, Jan. 1973, pp. 129-144.

⁹Sreenivasan, K. R. and Antonia, R. A., "Properties of Wall Shear Stress Fluctuations in a Turbulent Duct Flow," *Journal of Appplied Mechanics*, Vol. 44, Sept. 1977, p. 389.

¹⁰Klages, H., "Beitraege Zur Experimentellen Unter Suchung Und Anwendung Von Heissfilmsonden," Max-Planck-Institute Für Strömungsforschung, Göttingen, Bericht 14, July 1977.

¹¹ Kreplin, H. P., "Eine Methode Zur Linearisierung Von Heissflimsignalen Mit Dem Digitalrechner PDP15 Und Ihre Anwendung Bei Messungen in Einer Turbulenten Kanalströmung," Max-Planck-Institut für Strömungsforschung, Göttingen, Bericht 2, 1973

¹² Kreplin, H. P. and Eckelmann, H., "Behaviour of the Three Fluctuating Velocity Components in the Wall Region of A Turbulent Channel Flow," *Physics of Fluids*, Vol. 22, July 1979, pp. 1233-1239.

¹³ Schildknect, H., Miller, J. A., and Meier, G. E. A., "The Influence of Suction on the Structure of Turbulence in Fully Developed Pipe Flow," *Journal of Fluid Mechanics*, Vol. 90, Jan. 1979, pp. 67-107